Search results for "Maxwell stre"
showing 6 items of 6 documents
A study on the influence of permanent magnet dimensions and stator core structures on the torque of the disc-type brushless DC motor
2000
This paper presents a three-dimensional analysis of the magnetic field distribution for a disc-type, double-sided, permanent magnet, brushless dc motor with a toroidal stator core. Calculations are carried out using the OPERA (3D) package with the TOSCA module. The electromagnetic torque is determined from the Maxwell stress tensor. For comparison, various permanent magnet dimensions and slotless vs. quasi-slotted stator cores are analysed, with an iron powder-resin composite effectively used to imitate the slotted core. The torque ripple is shown to be effectively reduced by appropriate permanent magnet dimensions. The simulation results are in good agreement with experimental data obtaine…
Balance equation of generalised sub-grid scale (SGS) turbulent kinetic energy in a new tensorial dynamic mixed SGS model
2000
A new dynamic model is proposed in which the eddy viscosity is defined as a symmetric second rank tensor, proportional to the product of a turbulent length scale with an ellipsoid of turbulent velocity scales. The employed definition of the eddy viscosity allows to remove the local balance assumption of the SGS turbulent kinetic energy formulated in all the dynamic Smagorinsky-type SGS models. Furthermore, because of the tensorial structure of the eddy viscosity the alignment assumption between the principal axes of the SGS turbulent stress tensor and the resolved strain-rate tensor is equally removed, an assumption which is employed in the scalar eddy viscosity SGS models. The proposed mod…
Field‐circuit analysis of construction modifications of a torus‐type PMDC motor
2003
This paper presents the field‐circuit analysis of a disc‐type torus DC motor with permanent magnets. Calculations of the magnetic field are carried out using the finite element method (FEM) in the 3D space. The integral quantities like the ripple‐cogging torque, back electromotive force, flux linkage, self and mutual inductances of the winding are analyzed. The electromagnetic torque is comparatively determined from the Maxwell stress tensor and co‐energy methods. Based on the 3D magnetic field calculations, the lumped‐parameter model of the tested motor is constructed, taking into account an electronic power converter as well. For comparison, various permanent magnet widths and teeth thick…
Mohr-cyclides, a 3D representation of geological tensors: The examples of stress and flow
2008
Mohr-circles are commonly used to represent second-rank tensors in two dimensions. In geology, this mainly applies to stress, flow, strain and deformation. Three-dimensional second rank tensors have been represented by sets of three Mohr-circles, mainly in the application of stress. This paper demonstrates that three-dimensional second rank tensors can in fact be represented in a three-dimensional reference frame by Mohr surfaces, which are members of the cyclide family. Such Mohr-cyclides can be used to represent any second rank tensor and are exemplified with the stress and flow tensors.
A disc-type motor with co-axial flux in the stator; - influence of magnetic circuit parameters on the torque
2002
This paper presents a three-dimensional analysis of the magnetic field distribution for a three-phase, disc-type, permanent-magnet, brushless DC motor with co-axial flux in the stator. Calculations are carried out using the 3-D finite element method (FEM). The electromagnetic torque is determined from the Maxwell stress tensor. For comparison, various dimensions of permanent magnets, pole shoes and air gap are analysed. It is shown that the ripple-cogging torque can be effectively reduced by an appropriate permanent magnet width and air-gap length. The simulation results are in good agreement with experimental data obtained from the prototype motor.
Electromechanical coupling in anodic niobium oxide: Electric field-induced strain, internal stress, and dielectric response
2012
Seemingly, contradictory results have been reported so far for electrostriction in anodic oxides. Furthermore, no definitive agreement could be obtained with theory. In this paper, in situ techniques are combined to elucidate electrostriction in anodic niobium oxide. The dependence of strain, internal stress, and dielectric constant on the electric field is measured by, respectively, spectroscopic ellipsometry, curvature, and impedance measurements. The through-thickness strain is tensile and proportional to the square of the electric field. The in-plane internal stress is compressive and proportional to the square of the electric field at low field values. The internal stress is predicted …